KeevoDrive® Space 10mm - Type 2

KeevoDrive® Space 10mm – Type 2

Trockenschmierung, kompakte Außenabmessungen und geringes Eigengewicht – der KeevoDrive® Space 10mm – Type 2.
Aufgrund der verwendeten Trockenschmierung und der eingesetzten Materialien ist dieses Mikropositioniersystem besonders gut für Anwendungen in extremen Umgebungsbedingungen geeignet.
Ob im ultra Hochvakuum oder bei extremen Temperaturen, die Positioniereinheit kann aufgrund ihres Schrittmotors mit 20 Schritten pro Umdrehung zuverlässig und einfachen im offenen Regelkreis betrieben werden.
Das System besitzt eine Exzentrizität von 1000 µm, wodurch bis zu 2000 µm Verstellweg möglich sind.
Herzstück dieses präzisen und zuverlässigen Mikrosystems ist ein spielfreies MaalonDrive® Getriebe mit einer Untersetzung von 160:1.

Vorteile

1) Einsetzbar in großem Temperaturbereich
2) Trockenschmierung durch Beschichtungen
3) Robuste Steuerung ohne Feedbacksystem
4) Spielfreiheit bei optimalem Fit zwischen Geschwindigkeit und Auflösung
5) Schrittweiten im nm-Bereich

Technische Parameter

Die ausgewiesenen Werte basieren auf Berechnungen und Messverfahren der Micromotion GmbH, die nach dem aktuellen Stand der Technik durchgeführt werden. Unsere Definitionen finden Sie unter www.micromotion-drives.com. Für weitergehende Informationen kontaktieren Sie bitte sales@micromotion.de.
Nr.
Parameter
Formelzeichen
Wert
Eigenschaften
P-001
Vakuumtauglich
UHV
P-003
Untersetzung
i
160 : 1
P-004
Selbsthemmung
ja
P-005
Max. Stellweg
s
2000 μm
P-014
Lost motion
7.0008 μm
P-015
Umkehrspiel
0 μm
P-016
Nennlastkraft
F
5 N
P-017
Spitzenlastkraft
F
10 N
P-018
Kollisionslastkraft
F
23 N
P-034
Lebensdauer bei Nennbetrieb
200 h
P-035
Abtrieb Radialspiel
0 μm
P-036
Abtrieb Axialspiel
0 μm
P-037
Radialsteifigkeit
c
70.09 N/μm
P-038
Axialsteifigkeit
c
40 N/μm
P-039
Max. zul. radiale Last auf Abtriebswelle (außer Betrieb, Kraft konstant einwirkend)
F
440 N
P-040
Max. zul. radiale Last auf Abtriebswelle (außer Betrieb, Kraft stoßartig einwirkend)
F
145 N
P-041
Max. zul. radiale Last auf Abtriebswelle (im Betrieb, Kraft konstant einwirkend)
F
115 N
P-042
Max. zul. radiale Last auf Abtriebswelle (im Betrieb, Kraft stoßartig einwirkend)
F
115 N
P-043
Max. zul. axiale Last auf Abtriebswelle (außer Betrieb, Kraft konstant einwirkend)
F
150 N
P-044
Max. zul. axiale Last auf Abtriebswelle (außer Betrieb, Kraft stoßartig einwirkend)
F
50 N
P-045
Max. zul. axiale Last auf Abtriebswelle (im Betrieb, Kraft konstant einwirkend)
F
380 N
P-046
Max. zul. axiale Last auf Abtriebswelle (im Betrieb, Kraft stoßartig einwirkend)
F
127 N
P-055
Massenträgheitsmoment
I
923 * 10-4 gcm2
P-056
Gewicht
m
15 g
P-057
Min. zul. Umgebungstemperatur (außer Betrieb)
T
-63 °C
P-058
Min. zul. Umgebungstemperatur (im Betrieb)
T
-63 °C
P-059
Max. zul. Umgebungstemperatur (außer Betrieb)
T
130 °C
P-060
Max- zul. Umgebungstemperatur (im Betrieb)
T
70 °C
Motordaten: Schrittmotor AM 1020-2R-A-0.25-8-01-A2017 Trockenschmierung
P-100
Motorbauart
Stepper
P-102
Grenzdrehzahl des Motors
n
3000 min-1
P-103
Resonanzfrequenz des Motors (bei Nennstrom)
f
140 Hz
P-105
Haltemoment des Motors (stromlos)
T
0.2 mNm
P-109
Nennstrom des Motors
I
250 mA
P-111
Nennspannung des Motors
U
2 V
P-112
Phasenwiderstand des Motors
R
8 Ohm
P-113
Induktivität des Motors
L
2.4 mH
P-114
Amplitude Gegen-EMK des Motors
U
0.6 mV/rpm
P-115
Vollschrittwinkel des Motors
18 °
P-116
Schrittwinkelgenauigkeit des Motors
±1.8 °
P-117
Elektrische Zeitkonstante des Motors
t
0.32 ms
P-118
Max. zulässige Wicklungstemperatur des Motors
T
130 °C
P-119
Wärmewiderstand des Motors zwischen Wicklung und Gehäuse
Rth1
3.9 K/W
P-120
Wärmewiderstand des Motors zwischen Gehäuse und Umgebungsluft
Rth2
53.8 K/W
P-121
Thermische Zeitkonstante der Motorwicklung
τw1
3200 ms
P-122
Thermische Zeitkonstante des Motorgehäuses
τw2
200000 ms
P-123
Isolations- und Prüfspannung des Motors
U
200 V
Exzenterdaten
P-501
Exzentrizität
1000 μm
P-504
Max. zul. radiale Last auf Exzenterlager (außer Betrieb, Kraft konstant einwirkend)
F
10 N
P-505
Max. zul. radiale Last auf Exzenterlager (außer Betrieb, Kraft stoßartig einwirkend)
F
10 N
P-506
Max. zul. radiale Last auf Exzenterlager (im Betrieb, Kraft konstant einwirkend)
F
10 N
P-507
Max. zul. radiale Last auf Exzenterlager (im Betrieb, Kraft stoßartig einwirkend)
F
10 N
P-508
Max. zul. axiale Last auf Exzenterlager (außer Betrieb, Kraft konstant einwirkend)
F
150 N
P-509
Max. zul. axiale Last auf Exzenterlager (außer Betrieb, Kraft stoßartig einwirkend)
F
50 N
P-510
Max. zul. axiale Last auf Exzenterlager (im Betrieb, Kraft konstant einwirkend)
F
380 N
P-511
Max. zul. axiale Last auf Exzenterlager (im Betrieb, Kraft stoßartig einwirkend)
F
127 N
P-513
Exzentrizitätsfehler
20 μm
Material Informationen
P-900
RoHS-konform
ja
P-901
Schmierstoff Getriebeabtriebslagerung
MoS2(drylubrication)
P-903
Schmierstoff Getriebeeinbausatz
DICRONITE®/MoS2(drylubrication)
P-904
Schmierstoff Motorlagerung
MoS2(drylubrication)
P-907
Schmierstoff Exzenterlager
MoS2(drylubrication)
P-908
Material Getriebeeinbausatz
NiFe
P-909
Material Getriebeabtriebslagerung
1.4108 DIN EN
P-911
Material Motorlagerung
Stainless steel
P-912
Material abtriebsseitiges Getriebegehäuse
1.4305 DIN EN
P-914
Material Motorgehäuse
Anodized aluminum
P-915
Material Exzenterlager
1.4108 DIN EN

Grafiken

P-512
Außer Betrieb und Kraft statisch einwirkend,Außer Betrieb und Kraft stoßartig einwirkend,Im Betrieb und Kraft statisch einwirkend,Im Betrieb und Kraft stoßartig einwirkend,
P-005
Stellwegverlauf,
P-008
Wiederholgenauigkeit unidirektional,
P-009
Wiederholgenauigkeit bidirektional,
P-012
Positionierauflösung,
P-016
Nennbetrieb,Grenzbetrieb,
P-502
Nenngeschwindigkeit,Maximale Geschwindigkeit,

Alternative Produkte

Einsetzbar in großem Temperaturbereich
Trockenschmierung durch Beschichtungen
Robuste Steuerung ohne Feedbacksystem
Spielfreiheit bei optimalem Fit zwischen Geschwindigkeit und Auflösung
Schrittweiten im nm-Bereich
Sterilisierbarkeit
Robuste Steuerung ohne Feedbacksystem
Hochbelastbare Abtriebslagerung
Spielfreiheit bei ultra hoher Auflösung
Schrittweiten im nm-Bereich
Vakuumschmierstoff
Einsatz hochwertiger Materialien
Hohe axiale Belastbarkeit
Robuste Steuerung ohne Feedbacksystem
Zylinderflächenadapter
Flexibel integrierbar
Vorgespannte Kugellagerung
Einfache Regelbarkeit
Spielfreiheit bei hoher Verstellgeschwindigkeit
Kugelgewindetrieb
Extrem kompakte Bauform
Extrem geringe Masse
Extreme Leistungsdichte
Großer Verstellbereich
2 rotatorische Freiheitsgrade
Flexibel integrierbar
Vakuumschmierstoff
Robuste Steuerung ohne Feedbacksystem
Spielfreiheit bei hoher Verstellgeschwindigkeit
Kugelgewindetrieb
Extrem kompakte Bauform
Einfache Regelbarkeit
Anwendungsspezifische Gestaltung des Gehäuses
Integrierte Endlagenschalter
Hohe Verstellkräfte
Flexibel integrierbar
Vakuumschmierstoff
Einfache Regelbarkeit
Kugelgewindetrieb
Spielfreiheit bei Drehzahl optimierter Untersetzung